Амперметр Постоянного Тока Своими Руками
Рисунок 1. Процесс измерения тока
Что покажет амперметр
Для такой простейшей цепи подсчитать ток совсем несложно, он составит 0, 018А или 18мА. Вместе с этим на рисунке показано, что миллиамперметр в одну и ту же цепь включен в трех различных точках. Согласно законам физики его показания будут совершенно одинаковы, ведь, сколько электронов «вытекает» из плюса батареи столько же возвращается обратно, но уже через «минус». А дорога у всех этих электронов одна: это соединительные провода, резисторы, а если подключены, то и миллиамперметры.
На рисунке 2 показана схема двухтранзисторного приемника из книги М.М. Румянцева «50 схем транзисторных приемников» (1966).
Рисунок 2. Схема двухтранзисторного приемника
В те далекие времена схемы в книгах сопровождались подробными описаниями и методикой их наладки. Часто рекомендовалось измерить токи на определенных участках схемы, обычно коллекторные токи транзисторов. Места измерения токов показывались на схеме крестиком. В этом месте, естественно в разрыв проводника, подключался миллиамперметр и с помощью подбора номинала резистора, отмеченного звездочкой, подбирался ток, указанный тут же на схеме.
Подводные камни при измерении токов
На рисунках 3 и 4 показана простейшая цепь, - батарейка, резистор и мультиметр. По закону Ома нетрудно подсчитать, что ток в этой цепи будет
I = U/R = 1, 5 / 10 = 0, 15А или 150мА.
Если приглядеться к обоим рисункам, то выяснится, что показания приборов разные, хотя в самих схемах, если их так можно назвать, ничего не изменилось. На рисунке 3 показания полностью соответствуют расчету по закону Ома.
Рисунок 3. Измерения тока в программе симуляторе Multisim
А вот на рисунке 4 они стали несколько ниже, а именно 148, 515mA. Спрашивается, почему? Ведь на схеме ничего не изменилось, источник тот же и резистор не стал больше или меньше.
Рисунок 4. Измерения тока в программе симуляторе Multisim
Дело в том, что любые свойства мультиметра можно изменять, что делается с помощью нажатия на кнопку «Параметры». В данном случае изменено входное сопротивление амперметра: на рисунке 3 оно было 1nΩ, а на рисунке 4 увеличено до 100mΩ, или всего 0, 1Ω. Этот пример приведен для того, чтобы продемонстрировать, как влияют на результат свойства измерительного прибора. В данном случае амперметра.
Попробуем в этой схеме увеличить ток в 10 раз. Для этого достаточно уменьшить номинал резистора также в 10 раз, тогда нетрудно подсчитать, что амперметр покажет полтора ампера. Если входное сопротивление принять равным 1nΩ, как на рисунке 3, то результат будет 1, 5A, что полностью соответствует расчету по закону Ома.